Ich muss einen gleitenden mittleren Filter mit einer Grenzfrequenz von 7,8 Hz entwerfen. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall verwenden Frequenzbereich Filter ndash user19373 Feb 3 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang ist Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Größenreaktion des Filters H (Omega). Mit ein paar einfachen Manipulationen, können wir, dass in einer einfacher zu verstehen: Das sieht vielleicht nicht leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der Sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Ff fs: Der Kehrwert dieser Gleichung ist für große N asymptotisch korrekt und hat etwa 2 Fehler für N2 und kleiner als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpaßfilters (Einpol-LPF) mit einer gegebenen -3dB Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). In der Tat haben sowohl die MA und die 1. Ordnung IIR LPF -20dB Dekade Slope in der Stop-Band (man braucht ein größeres N als die in der Figur, N32 verwendet, um dies zu sehen), aber während MA spektrale Nullen bei Fk N Und einer 1 f-Hüllkurve hat das IIR-Filter nur ein 1 f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basierte auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN 2) Sin (Omega 2) Omega 2piF MA (F) ca. N1 6F2 (N-N3) pi2. Und die Abzweigung mit 1 sqrt von dort. Ndash Massimo 17. Januar um 2: 08Frequenzantwort von Moving Average Filter und FIR Filter Vergleichen Sie den Frequenzgang des gleitenden Durchschnittsfilters mit dem des regulären FIR-Filters. Stellen Sie die Koeffizienten des regulären FIR-Filters als Folge von skalierten 1s ein. Der Skalierungsfaktor ist 1 Filterlänge. Erstellen Sie ein dsp. FIRFilter-Systemobjekt, und legen Sie seine Koeffizienten auf 1 40 fest. Um den gleitenden Durchschnitt zu berechnen, erstellen Sie ein dsp. MovingAverage-Systemobjekt mit einem Schiebefenster mit der Länge 40, um den gleitenden Durchschnitt zu berechnen. Beide Filter haben die gleichen Koeffizienten. Der Eingang ist Gaußsches weißes Rauschen mit einem Mittelwert von 0 und einer Standardabweichung von 1. Stellen Sie den Frequenzgang beider Filter mithilfe von fvtool dar. Die Frequenzantworten entsprechen genau, was beweist, dass das gleitende Mittelfilter ein Spezialfall des FIR-Filters ist. Zum Vergleich den Frequenzgang des Filters ohne Rauschen. Vergleichen Sie den Frequenzgang des Filters mit dem des idealen Filters. Sie können sehen, dass der Hauptlappen im Durchlassbereich nicht flach ist und die Wellen im Stopband nicht eingeschränkt sind. Der Frequenzgang des gleitenden Durchschnittsfilters stimmt nicht mit dem Frequenzgang des idealen Filters überein. Um ein ideales FIR-Filter zu realisieren, ändern Sie die Filterkoeffizienten zu einem Vektor, der keine Folge von skalierten 1s ist. Der Frequenzgang des Filters ändert sich und neigt dazu, sich näher an die ideale Filterantwort zu verschieben. Entwerfen Sie die Filterkoeffizienten anhand vordefinierter Filterspezifikationen. Beispielsweise ein FIR-Filter mit einer normierten Grenzfrequenz von 0,1, einer Durchlaßbandwelligkeit von 0,5 und einer Stoppbanddämpfung von 40 dB. Verwenden Sie fdesign. lowpass, um die Filterspezifikationen und die Designmethode zu definieren, um den Filter zu entwerfen. Die Antwort des Filters im Durchlaßbereich ist nahezu flach (ähnlich der idealen Reaktion), und das Stoppband hat Gleichstromgrenzen eingeschränkt. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Weitere Informationen finden Sie unter mathworks-Marken für eine Liste anderer Marken, die Eigentum von The MathWorks sind. Weitere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wähle dein Land
Comments
Post a Comment